
Biased Allocator for
Generational Garbage Collector

Hyung-Kyu Choi, HyukWoo Park and Soo-Mook Moon

Virtual Machine & Optimization Lab.

Electrical and Computer Engineering

Seoul National University

Presenter: HyukWoo Park

2
Virtual Machine & Optimization Lab

Outline

 Generational Garbage Collector

 Motivation

 Biased Object Allocator

 Evaluation

 Summary

3
Virtual Machine & Optimization Lab

Generational Garbage Collector

 Heap is divided into young area and old area

• New objects are allocated from young area only

• Minor GC for young area occur more frequently

– GC-survived objects are promoted to old area

• Major GC for young + old area occur once in a while

– When minor GC fails to reclaim space or major GC is requested

 Reduces overhead of each GC, but sometimes
makes young area overcrowded, causing more GCs

Young Area Old Area

Minor GC

Major GC

promote survived objects to

4
Virtual Machine & Optimization Lab

Generational GC (cont’)

 Generational GC suffers from additional overhead
when objects are promoted to old area

 Promotion overhead is consisted of

• Copying objects from young area to old area

• Updating address of pointers to moved objects

old pointer

new pointer

object before promotion

object after promotion

updated object

5
Virtual Machine & Optimization Lab

Motivation

 The overhead of promotion is unpredictable and
can be heavy

• Number of promoted objects varies

• Number of pointers referring promoted objects varies

 Therefore overall overhead of generational GC can
be reduced, if we can avoid the overhead of
promotion.

 Let’s allocate objects to old area instead of young
area to avoid the promotion.

6
Virtual Machine & Optimization Lab

Biased Object Allocator

 Allocates some new objects directly to old area

• Those objects likely to be long-lived

• Keep young area from being overcrowded

• Avoid the promotion overhead from young to old area

 How can we identify long-lived objects?

• We analyze the code to predict lifetime of object and
leave hint during ahead-of-time compilation

7
Virtual Machine & Optimization Lab

(1) Escape Analysis

 Escape analysis can identify local-scoped objects

• whose live-range do not escape method boundary
– J.-D. Choi et. al, Escape analysis for Java. In OOPSLA '99

– They can be allocated to the stack, not the heap

• Those objects may be short-lived, so not allocated to old
area

public String foo (int a) {

Integer x = new Integer(a);

…

return “interger ” + x.toString();

}

live-range of object

8
Virtual Machine & Optimization Lab

(2) Objects Allocated in Loops

 Most objects are allocated within loop

• from the observation of specjvm98 benchmark

 Objects allocated within loop seems to be short-lived

• They are likely to be temporary objects to compute
something

 But we should select object carefully

• Only object with size smaller than threshold are chosen

• Aggressive biased allocation may suffer from side effects.

9
Virtual Machine & Optimization Lab

(3) Objects Assigned to Static Fields

 Previous research shows that objects assigned to
static fields of classes tend to be immortal (long-
lived)

– M. Hirzel et al, Understanding the connectivity of heap objects. ISMM '02

 Let’s allocate those object to old area

10
Virtual Machine & Optimization Lab

Generating Biased Hint

 Generate and leave a hint to a allocation site

• where objectold are allocated

objectold
object which is expected to be long-lived

objectlocal
object identified by escape analysis

objectloop
object allocated within loop boundary

objectimmortal
object which is assigned to static fields

objectold = {(all objects) – objectlocal – objectloop } + objectimmortal

11
Virtual Machine & Optimization Lab

Implementation

 Proposed analysis is implemented in ahead-of-time
compiler (AOT)

• To isolate analysis time from runtime

 Of course, analysis can be implemented in JITC as well.

Ahead-of-time compiler

(Binary translator)

Java Virtual Machine

Java class files

Binary files

with hints

Java class files

static time runtime

Interpreter

Just-in-time compiler

Biased Allocator

Analysis to generate hint

for biased allocator

12
Virtual Machine & Optimization Lab

Evaluation Environment

 Digital TV platform

• MIPS (AMD Xilleon)

• 333MHz clock w/ 16K I-cache and 16K D-cache

• 128MB main memory

• Benchmark : specjvm98

 Oracle’s phoneME Advanced MR2

• with Just-in-time compilation (JIT)

• with Ahead-of-time compilation (AOT)

• 32MB of Java heap

13
Virtual Machine & Optimization Lab

Total Pause Time of GC

 GC overhead is reduced much in _209_db
• Up to 37.6% amount of objects are biased in _209_db

 However total runtime is not improved much, because Java
virtual machine spent relatively short time in garbage collection

• Total runtime has been improved less than 1.4%

0
5

10
15
20
25
30
35
40

Size of segregated
object ratio(%)

0.8

0.85

0.9

0.95

1

Total pause time of GC
(after/before)

S
h
o
rt

e
r

is
 b

e
tt

e
r

14
Virtual Machine & Optimization Lab

Effect of analyses

 Performance degrades with aggressive biased allocation
• without considering size of objects

 Escape analysis and loop analysis are effective

 Static field analysis is not effective

S
h
o
rt

e
r

is
 b

e
tt

e
r

0.8

0.85

0.9

0.95

1

1.05

Total Pause Time of GC (proposed/original)

all_w/o_size

all

escape only

escape+loop

escape+static field

15
Virtual Machine & Optimization Lab

Comparison of each GC

 Let’s look into the first five GCs.
• However we can’t compare GC by one-to-one, because GC behavior has been

changed after applying biased allocator

 Each GC invocation has shorter pause time with biased allocation.

 Promotion reduction and pause time reduction show correlation.

 The first GC invocation is delayed than original.

S
h
o
rt

e
r

is
 b

e
tt

e
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

GC pause time ratio in _209_db
(proposed/original)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

Promotion ratio in _209_db
(proposed/original)

16
Virtual Machine & Optimization Lab

Summary

 Biased object allocation for generational GC

• To reduce promotion overhead of generation GC

• Allocates some new objects to old area with analyses

• Three analyses has been used

– Escape analysis

– Loop analysis

– Static field analysis

 Evaluation shows biased object allocator can
reduce overhead of generational GC when used
carefully

Thank you !

