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Virtual machines often employ garbage collection (GC) to reclaim dead objects automatically. Various GC
techniques have been used, but the generational GC is known to show the best performance. It divides
the memory into the young area and the old area, and objects are allocated to the young area only such
that some of the objects that survive from a few GCs on the young area can be promoted to the old area.
Since young objects are likely die soon, we can perform GC on the young area more often than the old area,
which improves the overall GC efficiency. However, we observed that some objects are likely to be immortal
inherently, so it would be desirable to allocate them directly to the old area. We propose such a memory
allocator called biased allocator, which analyzes the code to identify objects to be allocated to the old area.
Our preliminary evaluation shows that the biased allocator can reduce an average of 4.1% of the GC pause
time of the generational GC while reducing the number of promotions significantly.
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1. INTRODUCTION

Virtual machine adopts automatic memory management to manage the heap. Auto-
matic memory management reclaims objects which are not used anymore automati-
cally from the heap, although object allocation is requested explicitly by a program.
Garbage collection is a famous approach to find unnecessary objects, i.e. dead object,
and reclaim them [Jones and Lins 1996]. Allocation strategies and garbage collection
should be considerate each other, since garbage collector is responsible for securing
and managing free space which is used by allocator later to allocate objects. We can
consider garbage collector a producer of free space and then allocator can be a con-
sumer of free space. Therefore some garbage collectors enforce allocation methods con-
sidering fragmentation, performance and throughput. In vice versa, some allocation
strategies are more efficient with specific garbage collectors. Various garbage collec-
tors have been proposed by many researchers [Appel 1989; Jones and Lins 1996; Hertz
et al. 2005; Xian et al. 2007; Reames and Necula 2013]. In detail, there have been dif-
ferent approaches to find dead object and also there are various ways to secure free
space. One of simplest way to find unnecessary objects is traversing pointers recur-
sively from always live objects, which are called roots, to find reachable objects which
are live and necessary. Another approach maintains counters for incoming references
to each object at runtime to determine a liveness of object [Levanoni and Petrank
2001]. There are also several ways to secure free space after identifying dead objects.
A simplest way maintains a list of free space by reclaiming dead objects. Another ap-
proach secures free space by moving live objects to different area, as a result previous
area contains only dead objects and whole previous area can be considered to be free
space. There are so many garbage collectors depending on how they identify dead ob-
jects and how they secure free space. Among them, a generational garbage collector is
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Fig. 1. A generational garbage collector with two generations.

famous and widely adopted in virtual machines, e.g. Java Virtual Machine from Oracle
[HotspotMM 2006].

A generational garbage collector manages the heap by splitting whole heap into sev-
eral generations from young to older. With a generational garbage collector, a new
object is always allocated from a nursery area which is one of generations and con-
sidered to contain young objects. Then later if a nursery is overpopulated and there
is no room for new objects, a generational garbage collector secures free space from a
nursery by moving live objects to older generations. We call this object copying a pro-
motion, since an object is promoted to old generations. Such garbage collection on a
nursery is called minor garbage collection. Later we have to reclaim all dead object in
young and old generations too when old generations are also overpopulated. We call it
a major garbage collection or a full garbage collection. Figure 1 depicts how a simple
two generational garbage collector works. Due to various advantages, a generational
GC is adopted in many virtual machines for various environments. First, a garbage
collection can be completed in a short time when minor GC is requested instead of full
GC, because minor GC performs only on a nursery which is relatively smaller than
whole heap. Although number of garbage collections increases relatively, each pause
time caused by garbage collection is reduced and responsiveness of virtual machine
is improved when compared to a garbage collector with only full GC. Furthermore
secured free space from a nursery is continuous and fragmentation free since whole
young generation is empty after all live objects are promoted. There are many vari-
ations of generational garbage collector depending on number of generations, size of
young and old generations and etc. [Appel 1989; Doligez and Leroy 1993; Xian et al.
2007] However a generational garbage collection has unavoidable runtime overhead
and it shows undesired behaviors in some cases.

A generational garbage collector has to promote live objects to older generations
to clear up a nursery. Each promotion contains not only copying an object but also
updating pointers which refer to the object just moved to a new location. A generational
garbage collector is beneficial when only few objects are live and most of objects in
young generation are dead. However when many of objects in a nursery are live and
is going to be promoted, the overhead of promotion increases to hide advantages of
a generational GC. In worst case when every object in a nursery is live, we have to
promote all objects and minor GC does not reclaim dead object at all with overhead of
minor GC and promotions. We suggest that such overhead can be avoided if we place
promoted objects to old generations instead of young generation when those objects
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are being allocated at first. We are going to segregate objects in various ways to reduce
number of objects allocated to a nursery. Rest of the paper is composed as follows. In
the next Section 2, we address the problem in detail and propose an approach to exploit
biased allocators to improve a generational garbage collector. Then we propose a way to
invoke biased allocator and describe three analyses to identify objects to be allocated
with biased allocators in Section 3. We describe how to combine proposed analyses
and how we implemented proposed approaches in real environment in Section 4. In
Section 5, proposed approaches are evaluated on a real embedded device. Section 6
summarizes the paper and discusses future works.

2. MOTIVATION

As we discuss in the previous section, a generational garbage collector itself suffer
from inherent overhead of promotion. As a result pause time of each garbage collection
can be increased to compensate advantages of a generational GC. There have been
many researches to improve a generational GC [Jones and Lins 1996; Xian et al. 2007;
Reames and Necula 2013] , but most of them require modifying a garbage collector
itself and a garbage collector is getting more complicated which is hard to predict the
effect modification in various situation.

We propose an approach to exploit an allocation instead of a generational GC to
overcome the undesired overhead of a generational GC. We already address that such
an undesirable behavior of a generational GC is due to promotion of many objects in a
nursery. In other words, such objects live long to the time when minor GC is requested
to reclaim dead objects. We are going to avoid the situation by simply locating such
objects in old generations instead of a nursery when objects are allocated. Simply we
can allocate all objects in old generations, but then it is not a generational GC anymore
and may suffer from long pause time of full GC instead. Therefore we have to choose
a set of objects and allocate them to old generation using biased allocators. In the
following section, we propose a way to make use of biased allocators and describe how
to identify objects to be biased in detail.

3. BIASED ALLOCATOR

With biased allocators, an object can be allocated to heap in different ways depend-
ing on various properties to improve the performance of heap management with a
generational garbage collector. On the other hand, traditional virtual machine with a
generational GC allocates an object to a nursery area of heap with a single same allo-
cator. We propose that we affect the performance of heap management in a beneficial
way by reducing copying overhead of generational garbage collection if we allocate an
object to other than a nursery carefully with different object allocators. In this section,
we will discuss when to choose an allocator and propose a way to make a decision with
less runtime overhead. Then we will describe three analyses to select an allocator.

3.1. When to choose an allocator

We can choose an allocator every time when an object is being allocated to the heap. It
would be best if we can perform fine-grain analysis for each object and decide allocation
area for each object. However it is not easy to predict lifetime of each object precisely
and there will be extra overhead if we choose an allocator every time an object is
being allocated. Usually an object allocation occurs very frequently and an additional
computation could harm overall performance. Therefore it would beneficial to runtime
performance if we can choose an allocator without extra overhead of an allocation itself.

A new bytecode in Java Virtual Machine always knows a type of an object to be
allocated [Lindholm and Yellin 1999] and the new bytecode allocate objects of same
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type. Therefore we are going to exploit the property that each new bytecode always
allocates isomorphic type of objects at runtime.

Also we try to reduce the overhead of decision making by making a decision once and
use the same decision later. To achieve these, we choose an allocator when bytecode
are analyzed and being translated into native machine code to improve overall perfor-
mance. A Just-in-time compiler (JITC) which translates bytecode into machine code at
runtime is a famous acceleration technique [Krall 1998; Yang et al. 1999; Arnold et al.
2000; Aycock 2003] as well as an Ahead-of-time compiler (AOTC) where the transla-
tion is occurred before bytecode is being executed [Proebsting et al. 1997; Varma and
Bhattacharyya 2004; Nilsson and Robertz 2005] .

A biased allocator is chosen when a new bytecode is being translated into machine
code depending on the type of object to be allocated. Then the new bytecode is trans-
lated into a machine code which allocates an object with the selected allocator. In this
way, we make a decision once and an allocation is done without additional overhead
other than that the allocator allocates an object in a different way.

3.2. How to choose an allocator

Even though that a specific new bytecode accepts an isomorphic type, it is not easy to
exploit the information to select an allocator wisely. We need whole type analysis on a
Java program to make a correct decision and it is not eligible for a JITC or AOTC, be-
cause whole type analysis including class hierarchy analysis [Dean et al. 1995; Snelt-
ing and Tip 2000] is not a simple problem and it takes much time. Therefore we con-
sider three information as well as simple type information, i.e. class information which
is known directly from the new bytecode itself.

First we identify a location where local-scoped objects are allocated. Also an alloca-
tion site within a loop is identified and being chosen to use a biased allocator. Finally
we analyze the use of an allocated object which is assigned to static fields and identify
locations where the object is allocated. Since an object can be allocated from multiple
locations depending on control flow, we exploit traditional iterative data follow analy-
sis. Of course, type information is always considered together with three properties.

3.2.1. Local-scoped objects. An object is known to be locally scoped if an object is live
only within a specific scope. A scope can be anything such as a basic block, a super
block, a trace, a method or even a program. There have been many researches to iden-
tify locally scoped objects and escape analysis is one of famous technique to identify
locally scoped objects. Escape analysis has been used in Java to make use of stack allo-
cation [Choi et al. 1999; Gay and Steensgaard 1999] to relieve memory pressure on the
heap and adopted in various JVM such as Java Standard Edition 6 [HotspotVM 2013].
We use an escape analysis to identify an allocation site where objects being allocated
are locally scoped. We expect that such an allocation site can make use of traditional
allocator or even stack allocator which uses a stack instead of the heap, because locally
scope objects are only live within a specific scope and liveness is limited to the scope
which can be consider being relatively shorter than other objects which escape the
scope. As a result, we don’t have to consider such allocation sites for being a candidate
for biased allocation to improve the performance of heap management with garbage
collection.

3.2.2. Objects allocated inside loops. Loops have been a famous target for an optimiza-
tion, because many programs spends most of the time in loops and small improvement
in a loop can be result in large runtime improvement of the performance due to its
repetition. We also look into loops, because an allocation in loops will continue allocate
same type of objects until loop stops and quite large amount of objects are allocated
inside of the loops.
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We expect that objects allocate inside loops are relatively short lived compared to
objects allocated outside of loops, because loops usually perform same computation
repetitively and many objects allocated within loops are for temporary use. We decide
objects allocated inside loop to be possibly short-lived at first. However we find that
some objects, which are allocated in a loop but have relatively small size, are long-lived.
Therefore allocation sites within loops are chosen when smaller objects are allocated.
We can easily compute the size of objects, because the type of object being allocated is
identified directly from new bytecode as we described before. We don’t have to worry
about leaving large objects behind in young area, because promotion overhead is more
dominated by number of objects being promoted than size of objects as we discussed in
previous sections.

3.2.3. Objects assigned to static fields. There are two types of objects in Java, i.e. an
instance object and a class object. An instance object is an instance of a specific class
which are usually allocated with new keyword of Java language and object we talked
before in this paper are all instance objects. A class object is a unique object of a specific
class and they are usually created implicitly by Java virtual machine when the class is
being resolved. A static field is a field not related to an instance object but class object
itself. Since a static field looks like a global variable, researches have shown that an
object assigned to a static field tend to be immortal, i.e. never dead till the program
ends [Hirzel et al. 2002].

We decide to make use of this property and use biased allocators for such alloca-
tion sites where any object allocated can be assigned to static fields. We make use of
traditional analysis of reaching definition to identify allocation sites on the compila-
tion unit. Candidate allocations sites can be one or more and even we can’t find a site,
because we perform analysis only within the compilation unit.

Of course, some candidate allocation sites can be duplicated with the previous anal-
ysis, i.e. allocation sites within loop. We will discuss how we arrange three analyses
we discussed here to make a decision for biased allocation in the following section.

4. ANALYSIS AND IMPLEMENTATION

Each allocation site can have three properties, i.e. local, loop and static. Local means
this allocation site allocates objects which are live only within the scope. Loop means
this allocation site is located within loops and size of allocation is larger than thresh-
old. Static means this allocation site allocate objects which can be possibly assigned
to static fields. Only allocation sites which is neither local nor loop are selected for
biased allocation. Then we find allocation sites with static property and add them to
candidates and we are going to describe how we make use of three analyses.

At first, we assume that all allocation sites are candidate for biased allocation. We
find locally scoped object with escape analysis. After we identify allocation sites which
only allocate locally scoped objects, we remove those sites from candidates. We do not
discard the list of allocation sites that are local and keep the list for later use.

We continue to identify allocation sites within loop and this analysis can be done
with other traditional loop optimizations as well. However this analysis should be
done after any control flow changes or code motions are made to loop, because the
location of an allocation site can be changed with those optimizations and even alloca-
tion sites can be eliminated after optimizations. Furthermore we do not analyze and
skip allocation sites which are already identified to allocate only locally scoped objects
from previous escape analysis. Then we reduce candidate allocation sites with results
of loop analysis. We find out that some allocation sites within loop allocate only locally
scoped objects and it is obvious that these objects have relatively shorter lifetime than
other objects which escape the same scope.
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Fig. 2. Candidate selection with three analyses

Finally we look into every assignment of an object to static fields and try to iden-
tify one or more allocation sites where the object was allocated. This analysis should
be done just before the code generation, because any control and data flow changes
can affect the result of this analysis. After we identify allocation sites, we add those
allocation sites to candidates for biased allocation. In short, we can formulate above
sequences as in Figure 2. We should keep the order of local, loop and static analysis,
because there can be an allocation site which reside in loop and allocate large objects,
but allocates objects which can be assigned to static fields. Of course there is no allo-
cation site which allocates locally scoped object and allocates objects assigned to static
fields, because an object is not locally scoped if there is any assignments of an object to
static fields.

We implemented these analyses on Oracle’s phoneME Advanced MR2 version where
ahead-of-time compiler (AOTC) [Proebsting et al. 1997; Varma and Bhattacharyya
2004; Nilsson and Robertz 2005] is available for translating Java bytecode to native
machine code with optimizations where proposed approaches had been inserted. Since
a translation unit of the AOTC is a method, our analyses were also done within a
method scope.

5. EVALUATION

We evaluate our proposed analysis on phoneME Advanced MR2 [PhoneME ] with digi-
tal TV (DTV)[Interactive TV ] set-top box which includes MIPS based core with 128 MB
main memory. We make use of AOTC to perform proposed optimization and observed
the effect of biased allocation without runtime overhead of analysis. Java applications
have been translated by AOTC before running and stored in set-top box for evalua-
tion. We use six micro benchmarks from specjvm98 [SPECjvm98 1999] to evaluate our
approaches. We choose a generic generational garbage collector with two generations
in phoneME Advanced MR2 to reclaim objects while running specjvm98. Since total
pause time due to garbage collections is relatively small compared to total running
time, we compared total pause time separately instead of total running time and mea-
sured the amount of promotions occurred in generation garbage collections.

5.1. Total pause time of garbage collections

We measured total pause time of garbage collections before and after applying pro-
posed approaches and compared them in Figure 3. About up to 12.2% of total pause
time caused by garbage collection has been reduced and about 4.1% of pause time is
removed in average. Figure 4 depicts the size of biased objects compared to total size
of objects allocated. We identify lots of objects from _209_db where pause time has been
reduced most. However even we biased more than 10% of objects from 228 _jack, total
pause time is not reduced much as we expected compared to other programs and we
can’t find direct correlations between the size of biased objects and total pause time.
After careful examination, we find out that total pause time of generational garbage
collector is affected by various factors and it is very hard to predict. For example,
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Fig. 3. Ratio of total pause time after applying bi- Fig. 4. Ratio of biased objects size compared to total
ased allocation compared to non-biased allocation objects

size and number of objects allocated in nursery area affect pause time. When promo-
tion occurs, more factors affect pause time of generational garbage collection, because
a promotion includes copying an object and updating pointers to copied object. Even
worse promotions may incur a full major garbage collection when there is no sufficient
space in a mature area.

On the other hand, our approaches may consume a mature area more aggressively
due to false detection. Three analyses we proposed are all based on static analysis
without runtime information. Therefore we can’t predict exact life time of objects and
availability of the heap is not concerned at all. As a result proposed approach may
induce side effects in unexpected ways due to exploiting a mature area much more
than a nursery area. However it is not easy to calculate lifetime of objects exactly and
our research is a start point to exploit different allocation based on analyses. We will
discuss these matters in the last section again with future works.

5.2. Effect of each analysis

We also evaluated the effect of each proposed analysis in Figure 5. When we choose
objects with an escape analysis, we can’t reduce total pause time of garbage collections
effectively. We found that total pause time has been reduced much after analyzing
loops. Even though we decide to bias objects which are allocated to static fields to-
wards old generation, Figure 5 shows that there is only a little improvement with this
optimization. However it is expected, because objects assigned to static fields are rarely
overwritten and few allocations are related to static fields. Of course, there are some
allocation sites where few objects are assigned to static fields and other objects are
discarded soon. A proposed analysis may decide those allocation sites to be candidate
for biased allocation but those are not desirable choices, because we want to allocate
objects that live long. Therefore those candidates can be false-positive. Nevertheless it
reduces pause time slightly in average.

5.3. Pause time of each garbage collection

We also examine each garbage collection to evaluate biased allocation. Since behav-
ior of garbage collections is changed after applying proposed optimizations, it is not
reasonable to compare each garbage collections one-to-one. For example, garbage col-
lections are invoked at different phase of a program and each garbage collection may
reclaim different objects after applying optimizations. Therefore we choose the first
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five garbage collections of _209_db where promotion occurs and compared number of
promotions to original garbage collections as in Figure 6. We choose these five garbage
collections, because they behaves different but not totally different. Even though it is
not fair to compare them one-to-one, it is easily noticed that total number of promo-
tion occurred in the first five garbage collections have been reduced about 25%. All
five garbage collections have less number of promotions than original garbage collec-
tions. This is expected results, since biased allocator try to allocate objects in a mature
area other than in a nursery where some objects should be promoted later. The first
garbage collection has been invoked more lately than before, because a nursery is less
populated after applying biased allocation.

6. SUMMARY AND FUTURE WORKS

We proposed a way that different allocators can cooperate with garbage collectors
which have a critical role in memory management of virtual machine. For a gener-
ational garbage collector, we proposed approaches which make use of existing analy-
sis techniques to relieve the side effect of generational garbage collector. Allocation
sites have been chosen and biased with three analyses and each biased allocation
site uses new biased allocators instead of original allocator. We implement a proposed
approach in real embedded Java device and evaluate the effectiveness. Total pause
time of garbage collections has been reduced and promotion overhead of generational
garbage collection has been also reduced in overall.

However we can’t guarantee correctness of biased allocation with analyses discussed
in this paper. Furthermore analyses discussed in this paper are done at static-time and
does not make use of any runtime information. We expect that analyses can be more
accurate if runtime information is provided. Each allocation site use same allocator
after decision had made. We expect allocators can be chosen adaptively or allocator
itself can evolve for further improvement. Also we use only single biased allocator to
bias objects but more allocators can be used for various garbage collectors. We are
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also expecting that there are opportunities for biased allocation to improve garbage
collectors other than generational.
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