Programming Strategies for Contextual Runtime Specialization

Tiago Carvalho, Faculdade de Engenharia da Universidade do Porto
Pedro Pinto, Faculdade de Engenharia da Universidade do Porto
Joao M. P. Cardoso, Faculdade de Engenharia da Universidade do Porto

Runtime adaptability is expected to adjust the application and the mapping of computations according to
usage contexts, operating environments, resources availability, etc. One of the runtime adaptability possi-
bilities is the use of specialized code according to data workloads and environments. Traditional approaches
use multiple code versions generated offline and, during runtime, a strategy is responsible to select a code
version. Moving to runtime code generation can achieve important improvements but may impose unaccept-
able overhead. This paper presents an aspect-oriented programming approach for runtime adaptability. We
focus on a separation of concerns (strategies vs. application) promoted by a domain-specific language for pro-
gramming runtime strategies. Our strategies allow runtime specialization based on contextual information.
We demonstrate our approach with examples from image processing, which depict the benefits of runtime
specialization and illustrate how several factors need to be considered to efficiently adapt the application.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers

Additional Key Words and Phrases: Runtime Adaptability, Program Specialization, Aspect-Oriented Pro-
gramming, Domain-Specific Languages
ACM Reference Format:

Int. Workshop on Dynamic Compilation V, N, Article A (January 2015), 10 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

In future, advanced, embedded computing systems, especially the ones in highly dy-
namic environments, applications may have to adapt to changes in contextual infor-
mation (e.g., users location and activity), or to changes in resource availability (e.g.,
energy [Flinn and Satyanarayanan 2004] and connectivity) [Mukhija and Glinz 2005].
Adaptability may include changes in application parameters, application functionali-
ties, selection among different algorithms (e.g., differing in computational complexity),
different compiler optimizations, hardware/software partitioning schemes [Stitt et al.
2003], options to map computations to reconfigurable units [Vahid et al. 2008], man-
agement of system resources (e.g., switching and/or deactivating sensors), etc.

One of the runtime adaptability possibilities is the use of specialized code according
to data workloads and environments. Traditional approaches use multiple code ver-
sions generated offline by a compiler and during runtime an adaptive strategy is re-
sponsible to select among the code versions [Diniz and Rinard 1997]. Moving compiler
optimizations and code generation to runtime can achieve important improvements
[Kistler 1997] but may impose unacceptable overhead and in order to keep the over-
head low the compiler analysis and optimizations might be circumscribed to specific
and low-overhead optimizations (as is the example of the Just-In-Time (JIT) compil-
ers).

We present a template-based Java bytecode generation approach to reduce the run-
time overhead while making possible to generate specialized versions of certain codes.
The main idea is to substitute the multiple code versions produced by an offline com-
piler for a set of computations by a code generator based on a template. Our first
examples of template-based code generators are presented in this paper and are used

This work is supported by the Fundagdo para a Ciéncia e a Tecnologia, under PhD grant
SFRH/BD/90507/2012.

International Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2015.

A:2

in the context of an odd-even sorting network in the examples of median and sort and
of a Sobel image processing operator.

This work is part of our ongoing research for novel techniques to both program and
map runtime adaptability strategies, in the context of advanced embedded computing
systems. The specification of adaptation strategies is exposed to developers as a high-
level domain-specific language (DSL), based on LARA language [Cardoso et al. 2012].
An approach promoting the separation of concerns is beneficial as it makes easier
the debug, verification, optimization, specialization, and the mapping of the behavior
responsible for the runtime adaptation to specific computing cores. Furthermore, a
separation of concerns may require only minor changes to the original application.

This paper is organized as follows. Section 2 shows a motivational example for the
ongoing work and some preliminary results. Section 3 describes our approach in pro-
viding program runtime adaptability. Section 4 presents some experimental results.
Section 5 shows the most relevant related work on runtime adaptability. Finally, Sec-
tion 6 draws some conclusions and describes future work.

2. MOTIVATIONAL EXAMPLE

Software applications are usually developed in a generic fashion, in a way that dif-
ferent input data, value ranges, execution parameters, system parameters, etc., may
be considered by reusing the same code. Most contextual information is only available
at runtime (e.g., input data, program and system configuration) and if used can pro-
vide an advantageous position to improve the efficiency of an application. For instance,
certain input ranges allow specialized versions of a program to achieve considerably
higher performance than the original (generic) version. The specialized version should
be chosen for execution, providing that it has better performance and produces the
same output (or accurately similar) as the original version.

Having different algorithms, the selection of the best implementation, within a set
of values, is dependent on different parameters, such as number of values, the values
range, or the data structure used to store the values. Some of these parameters are only
available at runtime, making the specialization, with these parameters, impracticable
at compile-time.

As an example, consider the calculation of the median of a number of values. This
calculation is commonly used in different areas, such as in statistics and image pro-
cessing. The most common median approach retrieves the middle value of a list sorted
with algorithms such as quicksort, counting sort, and sorting networks [Cormen et al.
2001]. To select the median value, it is not required to completely sort all values, as
only the median value has to be in the correct position. The sorting networks are practi-
cable examples, in which specialized versions, focused on retrieving the median value,
can provide better performance than generic sorting methods.

Some smoothing image process algorithms use the median to output each pixel in
a resultant smoothed image. For each output pixel, the median value is calculated
considering its N neighbor pixels, where N is typically defined prior to the median cal-
culation s. Being the images in gray scale, the contextual information in this example
can indicate that the range of these pixels is between 0 and 255, while N is defined
by the window size used to acquire the surrounding pixel neighbors. A specialization
process in this method includes the selection of the best implementation for the given
parameters, and an optimization phase that takes into account these values.

The code implementation of a median image processing filter presented in [Fisher
et al. 2005] is an example of code developed to be generic (from a library). The code
considers the use of an ArrayList to store the values to be sorted. Then, the algorithm
determines the [4] maximum values in the ArrayList and removes them. The last
maximum value to be removed is the median value. This implementation may add

International Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2015.

A:3

performance overhead in terms of the data structure as the remove operation of data
elements of the ArrayList is heavier than when using a LinkedList and there might be
more efficient algorithms to calculate the median and considering specific information
regarding the execution environment.

We have analyzed different median algorithms and evaluated their performance
when executing in a JRE 1.8.0_11 in a PC with Ubuntu 13.10, Intel® Core™ i5 @
3,20GHz * 4, with 8 GB of RAM. Fig. 1 depicts the speedups achieved by code spe-
cialization according to the input parameters (window size) for the 6 most relevant
approaches, namely, quicksort, counting sort, and a sorting network with different op-
timizations: unfolded (usn), optimized to determine the median value (usn_optimized),
array accesses replaced with local variables (usn_localvars), and optimized version us-
ing local variables (usn_optimized_localvars). Our experiments show that when dealing
with a small number of values (e.g., 9 values for a 3x3 window), a sorting network, opti-
mized to output the median, is considerably faster than other approaches. On the other
hand, for larger number of values the counting sort is faster, while the performance of
the sorting network degrades significantly.

I B quicksort |:| 0 counting_sort D 0 usn_array

0l B usn_localvars [1 usn_optimized_array ENY usn_optimized_localvars

T T > T
~
10 | 2 -
8 N
[}
3
g 6 3 g
[=} <
@ 2 . 8
41 LS gy 7
« N N N
2 - N
o 38 &
o o o ©
0 — [l
3x3 5x5 <7

Window Size

Fig. 1: Speedups achieved with code specialization for a smooth image processing al-
gorithm using the median approach and for an image size of 1024x768 pixels.

In this example, we can see that runtime adaptability needs to consider the switch
among different algorithms and possible specialized code versions for each algorithm.
For instance, when considering the use of different sizes of unfolded sorting networks
one possibility is to use a template-based generator of JVM instructions that is able to
provide the specialized versions of the sorting network in runtime.

3. RUNTIME ADAPTABILITY USING LARA

A DSL, based on an AOP approach, may allow the developers to use a language focused
on modifying a target application, without changing the source code, with goals that
range from code monitoring to specialization [Cardoso et al. 2012]. The DSL can pro-
vide low-level constructions allowing rigorous definition of which modifications a strat-
egy should apply and where it should take place. It also provides high-level constructs
in which several low-level constructions may be invoked with user-defined heuristics.

International Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2015.

A4

Following an AOP approach allows developers to have more control on the applica-
tion of secondary concerns (e.g., optimization of specific kernels with specific parame-
ters), promoting, among other features, program maintainability, program portability
and developer productivity. A DSL able to code adaptive behavior, allows developers
to specify strategies for adaptation, improves portability, and helps tools to map those
strategies to the target system.

The target application remains independent from this approach for its execution.
Our approach is driven by three phases. First, the runtime adaptation strategies are
defined in a DSL. The application is then weaved, at compile-time, with the given
strategies, to comprise runtime adaptability. During the execution of the application,
execution points trigger runtime weaving and apply the adaptation strategy.

For the specification of runtime strategies, we are extending the LARA lan-
guage[Cardoso et al. 2012] to include runtime directives, in order to make runtime
information accessible in the weaving process. The new LARA extension provides dy-
namic functionality to the language, and access to runtime information within an
apply statement. As an example, a strategy for the selection of the best median im-
plementation, according to Section 2, is depicted in Fig. 2. This strategy selects the
required parameters, at runtime, and dynamically applies a specialization based on
those parameters. Note that this strategy assumes the existence of a call to method
“getMedian” in method "smooth” recieving an “inputImage” as argument, and the size
of the processing window is defined as a field in an "ImageUtils” class.

aspectdef Best_median_implementation
select function{"smooth"}.call{"getMedian"} end
select dynamic
windowSize: class{"ImageUtils"}.field{"windowSize"};
image: function{"smooth"}.argument ("inputImage");
end
apply dynamic
switch (&windowSize){

case 3: $call.perform specialize("sortedNetwork.tpl", &window.size); break;
// case 5 ...
case 7: if (&image.range == "[0,255]")
$call.perform specialize("countingSort.tpl", &window.size, &image.range);
else $call.perform specialize("quicksort.tpl", &window.size); break;
}
end

end

Fig. 2: LARA strategy example for runtime specialization.

Fig. 3 shows the current flow of our concept. At compile time the weaving engine
receives the application to be adapted and the LARA strategies (). The application is
adjusted according to where adaptation is intended, and where the required data can
be retrieved, i.e., execution site where the necessary runtime information is defined.
The weaving engine generates an adapted version of the application. The adaptive en-
gine is then supplied with template-based generators (2) and the adapted application
is executed in the JVM (3). The adapter is responsible to generate specialized code ver-
sions with the provided templates, according to the given input runtime information
and strategy. During program execution, when an execution point triggers an adapta-
tion event, it generates a new specialized version according to the given input from the
application @). The new version is then executed instead of the original version ().

Considering the strategy in Fig. 2, the adaptation phase will use the given template
and the information retrieved from the dynamic execution point to select the best im-

International Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2015.

© M N B G R W N

e T S
[G A W= O

A5

Strategy I Adapti
LARA Strategy > aptive
Bytecodes » Engi
@ gine
Weavi .% g
eaving [l
5 Adapt. o
E =
ngine Event 273
@ Running 2=
Application L
Java Code Bytecodes [T [NALLIELEN JVM

Fig. 3: Framework and flow for the runtime adaptation approach.

plementation and apply compiler optimizations using this information. For instance,
for the median example, a sort with 3x3 elements and based on the previous results,
the engine would select the sorting network as the best implementation and apply a set
of optimizations, to produce the specialized version, namely: complete loop unrolling,
scalar replacement, and optimize to retrieve only the median.

Fig. 4 presents part of the template-based sorting network code generation, before (a)
and after (b) the specialization. For the sake of simplicity, we present Java code instead
of JVM instructions (present in the Java bytecodes). The template-based generator
fully unrolls the loops, the array accesses are replaced with accesses to local variables
and the unnecessary instructions were removed. The template used here considers
that the input values are stored in an array of integer values and is able to generate
the unfolded code needed to calculate a median of N (variable length in the code) values
based on an odd-even sorting network.

for(int i = 0, init = 0; i < length/2; i++){ 1| int value_0 = values [0];
for(int index=init; index < length-1; index+=2){ 2| int value_1 = values[1];
if (values[index] > values[index+1]) { 3| //6 lines omitted
int temp = values[index]; 4| int value_8 = values[8];
values [index] = values[index+1]; 5| if (value_0 > value_1) {
values [index+1] = temp; 6| int temp = value_O0;
} 7| value_0 = value_1;
3 8| value_1 = temp;
init = 1-init; //for odd-even swaps 9| }
¥ 10| // +/-140 lines omitted
. 11| if (value_3 > value_4)
if (length % 2 == 0) { //length is even 12| value_3 = value_4;
int middleLeft = values[values.lenght/2 - 1]; 13| if (value_5 > value_6)
int middleRight = values [values.lenght/Z]; 14 value_5 = value_6;
return (middleLeft + middleRight)/2; 15| if (value_4 > value_5)
} 16| value_4 = value_5;
return values[values.length/2]; 17| return value_4;
(a) Original, folded, sorting network (b) Specialized version

Fig. 4: Template-based specialization in the sorting network algorithm.

4. EXPERIMENTAL RESULTS

We present here some of the experiments we have conducted in order to evaluate the
potential for runtime specialization. We include as benchmarks an image median filter,
the calculation of the median, the sorting operation, and a Sobel image processing
operation. All the experiments were performed in a JRE 1.8.0.11 JVM in a PC with
Ubuntu 13.10, Intel® Core™ i5 @ 3,20GHz * 4, with 8 GB of RAM.

The experiments we include here are all based on the changing of a critical operation
of an algorithm with a more suitable version for a specific runtime context (usually de-

International Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2015.

A:6

pendent of specific data values). They make strong evidence of the performance gains
we can achieve when commuting to those more suitable implementations. The follow-
ing are the versions used in the experiments:

e ifu: full unroll of the innermost loops

e local filter: move the filter coefficients used in an operation to the convolution
method

o ifu sr:ifu with replacement of array accesses to the filter coefficient with the corre-
sponding scalar value

e ifu_sr_dr: ifu_sr and reuse of N neighbour elements (e.g., 6 elements reused for a
window of 9)

¢ usn: unfolded sorting network

Sobel Image Processing: This experiment uses the Sobel algorithm [SOBEL
19901, which is an edge detection process for images. The version used in this example
consists of three phases:

1) Gaussian convolution to smooth the input (gray) image
2) Convolution with a vertical Sobel kernel
3) Convolution with an horizontal Sobel kernel

All the three operations are using the same convolution method, where the only
difference between them is the window coefficients. Because of this, we are able to spe-
cialize the convolution method for each of these operations, considering three different
versions of this method.

We tested different transformations to verify how the program behaves. Initially,
knowing the kernel size, we performed a full loop unroll on the innermost loops that
iterate over the window coefficients. In the second transformation we moved the ker-
nel inside the convolution method as a local variable, instead of as a parameter. Be-
cause of this, we developed a different method for each convolution operation. The
third transformation builds on top of the first transformation. We used scalar replace-
ment to substitute the accesses to the array of coefficients with the corresponding
values. Furthermore, being some coefficients equal to zero, some statements such as
sum+ = image[z][y] * coef ficient were eliminated. Finally, the fourth transformation
starts from the previous and reuses data from a given iteration that is necessary in
the following iteration. The results for each of these transformations are presented in
Fig. 5 (a), where the last series represents the execution of the entire Sobel algorithm,
with the three operations.

The convolution specialization for each type of operation provides good individual
speedups. Simply fully unrolling the inner loops allows more than 60% speedup. The
replacement of the array accesses to the kernel with the corresponding coefficients
is an important optimization in this specialization, removing the accesses overhead.
This optimization provides speedups from a factor of 4 to 6.5. As mentioned before,
when the coefficient is zero, the operation is ignored by the generator, which results in
less arithmetic and assignment operations executed. This advantage can be observed
when comparing the ifu_sr speedups between the vertical and horizontal convolution
with the gaussian convolution (white bars in Fig. 5 (a)).

Data reuse provides a slight boost from the previous optimization. Fig. 6 shows
the reuse scheme applied in each iteration. For a 3x3 kernel, this transformation al-
lows reusing 6 values from the previous iteration, meaning that only 3 array accesses
are necessary (9 array accesses in the original version). The horizontal convolution
takes advantage of not requiring the middle row of elements, hence only accessing and
reusing the top and bottom rows (see Horizontal Conv. in Fig. 6). This means that we
reuse 4 values and perform only 2 array accesses. In the vertical convolution, for a

International Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2015.

A7

B nifa [Dlocal fitter [O ifu_sr ll M ifu_sr_dr ’ I counting_sort O0usn(lQ usn_optimized

10 T T — T 10 T T T
[=}
©
8 : 2
© ©
5)
2 6
)
Q
& 4
2
Gaussian Vertical Horizontal Sobel 3x3 5x5 7x7
Conv Conv Conv
(a) (b)
—6— quicksort —5— counting_sort —B— counting_sort —&— usn
—A— USn —x— usn_optimized —»— usn_optimized
15 T T T 3 T T T
o 10 =
=]
]
)
Q
@
5L .
0 ‘ \&_A\r_w ' "3
20 40 60

(c) (d)

Fig. 5: Results for all the experiments. These represent the speedup: (a) when using
specialized versions for the Sobel operations, (b) when inlining the versions presented
in the motivational example (please see Fig. 1), (¢) over the original sorting algorithm
when finding the median of a given number of elements and (d) over the quicksort
algorithm when sorting an array for a given number of elements.

given iteration, the middle column is not necessary (see Vertical Conv. in Fig. 6). How-
ever, since we are iterating from left to right, iteration ¢ + 1 requires us to save the
middle column (as it will be used in iteration ¢ + 2). Therefore, the vertical convolution
is not able to attain the same benefits as the horizontal convolution, requiring three
array accesses and reusing 3 values.

The Sobel operation is the sequential execution of the first three operations. This
means that Sobel was executed with the specialized versions of the other three opera-
tions. By applying the scalar replacement (with or without data reuse), we are able to
achieve an overall speedup of 4.

Inlined Image Median Smooth Filter: Following the experiment presented in
Fig. 1, Section 2, we now show the results of inlining algorithm versions to compute
the median of a set of pixels in the median filter. This transformation avoids the need
of storing the pixel neighbors in an array and send them to the method responsible to
calculate the median of a set of pixels.

The unfolded sorting network (USN) presented in this example (usn and
usn_optimized) are the same as the USN versions using local variables whose results

International Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2015.

A:8

//’ // S \\\
- -\ Data Reuse Scheme
a0 | al | a2 al | a2 [new 6 reused values
3 array accesses
a3 | a4 | a5 > a4 | a5 |new 9 local variables
a6 |a7 a8 | "t | a7 | a8 |new

Vertical Conv.

a0 [al | a2 a0 a2 3 reused values

pl 0 ped 3 array accesses

a3l a4 | a5 = a3 ab5 9 local variables

2 0 b2 3 calculations removed
a6 a7 | a8 a6 a8

x 1 x 0 x -1

Horizontal Conv.
a0 [al | a2 a0 [al | a2 al [a2 [new 4 reused values
= 2 array accesses
6 local variables
3 calculations removed

a3 |a4|ad5 =

a6 a7 | a8
k-1 |x -

Fig. 6: Data reuse scheme used in the Sobel algorithm and its implications for the
vertical and horizontal convolution operations after scalar replacement and useless
code elimination are performed.

are presented in Fig. 1. The inlined version of the counting sort uses the neighbor val-
ues directly in the counting array, avoiding half of load/stores. The inlined USN copies
the neighbor values directly to the local variables, saving 2/3 of load/store operations.
Fig. 5 (b) depicts the speedups attained with these inlined versions, over the inlined
original version (based on the Java code in [Fisher et al. 2005]).

Comparing to the results presented in Fig. 1, an inlined version provides better per-
formance in an USN for a 3x3 kernel, maintaining the same speedups for the other
algorithms and kernel sizes. The speedups for counting sort maintain the same pat-
tern compared to the outlined version. In the inlined versions (Fig. 5 (b)), there is no
performance gain when using the optimized USN, as it seems that the JVM HotSpot
is able to remove the unnecessary operations.

Median Detection: In this experiment we test alone the median operation used in
the median filter for different array sizes, to observe if the performance improvements
behavior changes with the number of elements. Fig. 5 (¢) illustrates the speedups over
the original version (i.e., the median used in the image processing library [Fisher et al.
2005]).

The quicksort algorithm maintains a steady speedup (between 25% and 40%) for
every array size tested, as seen in Fig. 1. This algorithm may be useful for larger
number of elements, and when we are unable to use counting sort, for instance, for
larger values ranges of the elements to be sorted. A USN is the best approach for
lower number of elements, while the counting sort is more effective for larger number
of elements. Compared to the original version, counting sort is able to continuously
improve the performance, as this algorithm has linear complexity while the original
has N -log N complexity.

Sort Algorithms: Here, we evaluate how the performance of the sorting algorithms
used when varying the input dataset size. Fig. 5 (d) presents the speedups achieved by
the counting sort and USN algorithms over the quicksort implementation. The algo-
rithms behavior is similar to the previous tests, where the USN versions are the best
solution for small number of elements, while the counting sort algorithm is the best
solution as the number of elements grows. For the USN, by using local variables we

International Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2015.

A9

achieve better performance than when using arrays, maintaining greater performance
for a slightly larger number of elements.

The USN versions show a sharper performance drop than in previous experiments
since we are comparing them to the quicksort algorithm, which, in turn, maintains a
steady speedup over the original version.

Analysis: The Sobel specialization depicts the advantage of program specialization
based on contextual information. With an array of coefficients, we are able to generate
specialized versions that outperform the original version, applying optimizations not
performed by the JIT. The speedups obtained from the experiments with the median
and sort algorithms show the advantage on algorithm selection taking into account
the input datasets. These results provide evidence of the high impact on considering a
specialization/optimization layer, as the JIT may not be able to perform more agressive
optimizations (scalar replacement and data reuse in this case). Our approach aims for
a higher-level layer than JIT in order to provide these type optimizations.

5. RELATED WORK

ADAPT [Voss and Eigemann 2001] is a compiler-support framework which provides
dynamic and adaptive optimization processes, making use of compiler optimizations
and accessible optimization tools. The compiler generates application-specific runtime
systems based on the target application, optimizations required and heuristics to apply
them. The framework supports dynamic compilation, allowing one to explore different
implementations through “runtime sampling”.

The elastic computing [Wernsing and Stitt 2010] concept is based on using spe-
cialized functions that allow an optimization framework to try different implemen-
tations,possibly using different algorithms. They use a library of specialized functions,
a tool for implementation planning and a runtime environment system to combine
with a given application code. The user only specifies the function to be used, and the
framework is responsible to dynamically choose the best implementation.

The rePLay framework [Patel and Lumetta 2001] aims to improve performance ap-
plication using execution-guided optimizations, combining instruction pattern with
branch prediction. This framework takes advantage of runtime stability, i.e., instruc-
tion and data patterns that repeat during a program execution. These patterns are
used to generate optimized frames (single-entry, single-exit code regions) that replace
the execution of normal, conditioned instruction sets.

The deGoal tool [Charles et al. 2014] embeds dynamic code generators into applica-
tions, providing runtime data-dependent optimizations for the target processing ker-
nels. The applications kernels are built in fast, portable, and small binary code gener-
ators called “compilettes”. A compilette generates ad hoc versions of a kernel code at
runtime that are optimized to the current program/system situation.

Khan et al. [Khan et al. 2008] propose an automated approach to deliver special-
ization at runtime, overcoming the code size and runtime activities overhead with a
hybrid specialization approach, by first generating optimized code, through compile-
time specialization, and then generate templates working with a set of input values,
through runtime specialization, performed for a small number of instructions, in a
binary template. During execution, the templates are adapted to the new values.

Our approach distinguishes from the previous ones with the efforts to define a DSL
able to express runtime adaptivity strategies and the dynamic application of template-
based code generators. We are focusing on the use of a DSL to express the application
of runtime code optimizations, using, for instance, code specialization based on con-
textual information. Our approach, regarding runtime specialization/optimizations, is
orthogonal to the work on JITs [Aycock 2003] as we provide a specialization layer, fo-
cused on adaptive strategies based on pre-optimized/specialized bytecodes. The adap-

International Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2015.

A:10

tivity is envisioned as strategies expressed in LARA that at runtime decide among
specialized/optimized versions.

6. CONCLUSION

This paper proposed an aspect-oriented programming approach for runtime adaptabil-
ity considering the dynamic specialization of some parts of algorithms by using code
versions embodied in templates. Those templates are then used to generate code at
runtime. The approach relies on using a domain-specific language to program adap-
tation strategies decoupled from the target application. Adaptation strategies allow
runtime specialization based on contextual information, by which is possible to apply
compiler optimizations more efficiently or even decide which implementation is ade-
quate for the current execution state. We believe that our approach will provide higher
program maintainability and portability, and the exploration of different strategies in
early development cycles. Our preliminary experiments reinforce the benefits of code
specialization using contextual information. As ongoing and future work, we intend to
study different low-overhead techniques for efficient runtime adaptation and to inves-
tigate more examples to which a template-based code generator approach is suitable.

REFERENCES

AYCOCK, dJ. 2003. A brief history of just-in-time. ACM Comput. Surv. 35, 2, 97-113.

CARDOSO, J. M., CARVALHO, T., COUTINHO, J. G., LUK, W., NOBRE, R., DIN1Z, P., AND PETROV, Z. 2012.
Lara: an aspect-oriented programming language for embedded systems. In Proceedings of the 11th an-
nual international conference on Aspect-oriented Software Development. ACM, 179-190.

CHARLES, H.-P., COUROUSSE, D., LOMULLER, V., ENDO, F. A., AND GAUGUEY, R. 2014. degoal a tool to
embed dynamic code generators into applications. In Compiler Construction. Springer, 107-112.

CorMEN, T. H., LEISERSON, C. E., RIVEST, R. L., STEIN, C., ET AL. 2001. Introduction to algorithms.
Vol. 2. MIT press Cambridge.

DiNiz, P. C. AND RINARD, M. C. 1997. Dynamic feedback: an effective technique for adaptive computing.
SIGPLAN Not. 32, 5, 71-84.

FISHER, R., PERKINS, S., WALKER, A., WOLFART, E., BROWN, N., CAMMAS, N., FITZGIBBON, A., HORNE,
S., KORYLLOS, K., MURDOCH, A., ET AL. 2005. Hipr2: Image processing learning resources.

FLINN, J. AND SATYANARAYANAN, M. 2004. Managing battery lifetime with energy-aware adaptation. ACM
Trans. Comput. Syst. 22, 2, 137-179.

KHAN, M. A., CHARLES, H.-P., AND BARTHOU, D. 2008. An effective automated approach to specialization
of code. In Languages and Compilers for Parallel Computing. Springer, 308—-322.

KISTLER, T. 1997. Dynamic runtime optimization. Springer.

MUKHIJA, A. AND GLINZ, M. 2005. Runtime adaptation of applications through dynamic recomposition of
components. Springer-Verlag.

PATEL, S. J. AND LUMETTA, S. S. 2001. replay: A hardware framework for dynamic optimization. Comput-
ers, IEEE Transactions on 50, 6, 590-608.

SOBEL, I. 1990. An isotropic 33 image gradient operator. Machine Vision for three-demensional Sciences.

STITT, G., LYSECKY, R., AND VAHID, F. 2003. Dynamic hardware/software partitioning: a first approach. In
Proceedings of the 40th annual Design Automation Conference. ACM, 250-255.

VAHID, F., STITT, G., AND LYSECKY, R. L. 2008. Warp processing: Dynamic translation of binaries to fpga
circuits. IEEE Computer 41, 7, 40-46.

Voss, M. J. AND EIGEMANN, R. 2001. High-level adaptive program optimization with adapt. In Proceedings
of the Eighth ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming. PPoPP
’01. ACM, New York, NY, USA, 93-102.

WERNSING, J. R. AND STITT, G. 2010. Elastic computing: a framework for transparent, portable, and adap-
tive multi-core heterogeneous computing. In ACM SIGPLAN Notices. Vol. 45. ACM, 115-124.

International Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2015.

