
Advances in Dynamic Compilation
for

Functional Data Parallel Array Processing

Clemens Grelck, Heinz Wiesinger

3rd HiPEAC Workshop on
Dynamic Compilation Everywhere

DCE 2014
Wien, Austria

January 21, 2014

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

What is ...

Functional Data Parallel Array Processing ?

I Programming with multidimensional, immutable arrays

I Abstract from structural properties of arrays

I Treat arrays as abstract values

I Storage, layout, operations, ... all implicit

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Single Assignment C (SAC)

Language:

I Purely functional programming language

I Generic data-parallel array processing

I All arrays immutable
I Syntax imitates ISO C

I Assignment sequences (→ let-expressions)
I Branches (→ conditional expressions)
I Loops (→ tail-recursive functions)

Compiler:

I Highly optimising compiler

I Performance competitive with Fortran or C
I Automatic parallelisation for

I Symmetric multicore multiprocessors
I Graphics accelerators
I Heterogeneous systems

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Single Assignment C (SAC)

Language:

I Purely functional programming language

I Generic data-parallel array processing

I All arrays immutable
I Syntax imitates ISO C

I Assignment sequences (→ let-expressions)
I Branches (→ conditional expressions)
I Loops (→ tail-recursive functions)

Compiler:

I Highly optimising compiler

I Performance competitive with Fortran or C
I Automatic parallelisation for

I Symmetric multicore multiprocessors
I Graphics accelerators
I Heterogeneous systems

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Multidimensional Array Calculus: Rank and Shape

[1, 2, 3, 4, 5, 6]
rank: 1
shape: [6]

 1 2 3
4 5 6
7 8 9

 rank: 2
shape: [3,3]

i

k

j

10

7 8 9

1211

1 2

4 5

3

6

rank: 3
shape: [2,2,3]

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Shapely Array Type Hierarchy

...

...int int[1] int[42]

int[.]

int[]

int[.,.]

int[1,1] int[3,7]

* rank:

shape:

rank:

shape:

rank:

shape:

dynamic
dynamic

static

dynamic

static

static

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Genericity vs Performance Trade-Off

...

...int int[1] int[42]

int[.]

int[]

int[.,.]

int[1,1] int[3,7]

*

g
e

n
e

ric
ity

p
e

rf
o

rm
a

n
c

e

What software engineering principles demand:

I rank- and shpahe-generic programs

I wide-spread applicability

I code reuse

What the machine needs for performance:

I code customised to processed data

I exploit compile time knowledge for optimisation

I overcome abstraction boundaries

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

How Can We Reconcile Genericity and Performance ?

Observation:

I Often small numbers of different shapes prevail.

I Specialisation for concrete ranks and shapes !!

I Effectively apply large-scale static optimisation !!

Limitations:

I Code obfuscation

I Arrays obtained from external source (e.g. file)

I Functions called from external environment (e.g. C code)

Solution:
Dynamic Compilation to the rescue !

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

How Can We Reconcile Genericity and Performance ?

Observation:

I Often small numbers of different shapes prevail.

I Specialisation for concrete ranks and shapes !!

I Effectively apply large-scale static optimisation !!

Limitations:

I Code obfuscation

I Arrays obtained from external source (e.g. file)

I Functions called from external environment (e.g. C code)

Solution:
Dynamic Compilation to the rescue !

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

How Can We Reconcile Genericity and Performance ?

Observation:

I Often small numbers of different shapes prevail.

I Specialisation for concrete ranks and shapes !!

I Effectively apply large-scale static optimisation !!

Limitations:

I Code obfuscation

I Arrays obtained from external source (e.g. file)

I Functions called from external environment (e.g. C code)

Solution:
Dynamic Compilation to the rescue !

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Solution: Adaptive Runtime Specialisation

Observations:

I Various compute cores available even in modest systems

I Even with linear speedups one or two cores less hardly matter

Idea:

I Set one core aside for dynamic code adaptation

I Incrementally generate more efficient code as shape
information becomes available

I Accumulate adapted code in running process through
dynamic linking

I Use adapted code as soon as available through dynamic
dispatch

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Solution: Adaptive Runtime Specialisation

Observations:

I Various compute cores available even in modest systems

I Even with linear speedups one or two cores less hardly matter

Idea:

I Set one core aside for dynamic code adaptation

I Incrementally generate more efficient code as shape
information becomes available

I Accumulate adapted code in running process through
dynamic linking

I Use adapted code as soon as available through dynamic
dispatch

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Case Study: Convolution with Convergence Check

Algorithmic principle:

Iteratively compute the weighted
sums of neighbouring elements with
cyclic neighbourhoods and dynamic
convergence check

Implementation in SAC:

double [*] convolution (double [*] A, double eps)

{

do {

A_old = A;

A = convolution_step(A_old);

}

while (! is_convergent(A, A_old , eps));

return A;

}

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Evaluation Example: 3-d Convolution 100x100x100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 i
n
 s

e
c
o
n
d
s
 p

e
r

c
o
n
v
o
lu

ti
o
n
 s

te
p

Convolution steps

Experiment: 100x100x100 array
Runtime specialisation disabled
Runtime specialisation enabled

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Availability of Adapted Code

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 i
n
 s

e
c
o
n
d
s
 p

e
r

c
o
n
v
o
lu

ti
o
n
 s

te
p

Convolution steps

Experiment: 100x100x100 array
Runtime specialisation disabled
Runtime specialisation enabled

Key question:
How can we speed up the availability of adapted code ?

I Accelerate SAC compiler ?
I Hahaha

Subject of this talk: 4 complementary proposals to speed up
availability of adapted code

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Availability of Adapted Code

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 i
n
 s

e
c
o
n
d
s
 p

e
r

c
o
n
v
o
lu

ti
o
n
 s

te
p

Convolution steps

Experiment: 100x100x100 array
Runtime specialisation disabled
Runtime specialisation enabled

Key question:
How can we speed up the availability of adapted code ?

I Accelerate SAC compiler ?

I Hahaha

Subject of this talk: 4 complementary proposals to speed up
availability of adapted code

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Availability of Adapted Code

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 i
n
 s

e
c
o
n
d
s
 p

e
r

c
o
n
v
o
lu

ti
o
n
 s

te
p

Convolution steps

Experiment: 100x100x100 array
Runtime specialisation disabled
Runtime specialisation enabled

Key question:
How can we speed up the availability of adapted code ?

I Accelerate SAC compiler ?
I Hahaha

Subject of this talk: 4 complementary proposals to speed up
availability of adapted code

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Availability of Adapted Code

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 i
n
 s

e
c
o
n
d
s
 p

e
r

c
o
n
v
o
lu

ti
o
n
 s

te
p

Convolution steps

Experiment: 100x100x100 array
Runtime specialisation disabled
Runtime specialisation enabled

Key question:
How can we speed up the availability of adapted code ?

I Accelerate SAC compiler ?
I Hahaha

Subject of this talk: 4 complementary proposals to speed up
availability of adapted code

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Idea 1: Manifold Asynchronous Adaptive Specialisation

Key observations:

I Specialisation requests come in in bursts

I Dynamic specialisation often exhibits a great deal of sharing
among functions from same module

I Specialising two functions in conjunction may take the same
time as each individually

Our solution:

I Postpone triggering a specialisation by some (small) amount
of time

I Expect more specialisation requests before cut-off time

I Specialise multiple functions together

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Idea 1: Manifold Asynchronous Adaptive Specialisation

Key observations:

I Specialisation requests come in in bursts

I Dynamic specialisation often exhibits a great deal of sharing
among functions from same module

I Specialising two functions in conjunction may take the same
time as each individually

Our solution:

I Postpone triggering a specialisation by some (small) amount
of time

I Expect more specialisation requests before cut-off time

I Specialise multiple functions together

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Idea 2: Prioritised Asynchronous Adaptive Specialisation

Observation:

I Different specialisations yield different performance
improvements

I Can we choose the (presumably) most effective one?

Solution:

I Turn specialisation request queue into priority queue

I Create buckets of functions from same module

I Gather statistical profiling data regarding effectiveness of
specialisation

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Idea 2: Prioritised Asynchronous Adaptive Specialisation

Observation:

I Different specialisations yield different performance
improvements

I Can we choose the (presumably) most effective one?

Solution:

I Turn specialisation request queue into priority queue

I Create buckets of functions from same module

I Gather statistical profiling data regarding effectiveness of
specialisation

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Idea 3: Parallel Asynchronous Adaptive Specialisation

First approach: dedicated specialisation core:

1 2 4 6 8 10 12 14 16

Key observations:

I Dynamic specialisations are time-consuming
I Adapted functions only become available with delay
I Insight 1: One specialisation core only is suboptimal

I Insight 2: Any fixed number of specialisation cores is
suboptimal since specialisation competes with core application
for resources

Solution:

I Dynamically adjust number of specialisation cores:

1 2 4 6 8 10 12 14 16

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Idea 3: Parallel Asynchronous Adaptive Specialisation

First approach: dedicated specialisation core:

1 2 4 6 8 10 12 14 16

Key observations:

I Dynamic specialisations are time-consuming
I Adapted functions only become available with delay
I Insight 1: One specialisation core only is suboptimal
I Insight 2: Any fixed number of specialisation cores is

suboptimal since specialisation competes with core application
for resources

Solution:

I Dynamically adjust number of specialisation cores:

1 2 4 6 8 10 12 14 16

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Idea 3: Parallel Asynchronous Adaptive Specialisation

First approach: dedicated specialisation core:

1 2 4 6 8 10 12 14 16

Key observations:

I Dynamic specialisations are time-consuming
I Adapted functions only become available with delay
I Insight 1: One specialisation core only is suboptimal
I Insight 2: Any fixed number of specialisation cores is

suboptimal since specialisation competes with core application
for resources

Solution:

I Dynamically adjust number of specialisation cores:

1 2 4 6 8 10 12 14 16

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Idea 4: Persistent Asynchronous Adaptive Specialisation

Key observations:

I Dynamic code adaptation is for one program run

I Insight: the very same dynamic specialisations are built again
and again

Solution:

I Store dynamic specialisations in installation-wide persistent
storage

I Incrementally update the binary format of a module with new
specialisations as they materialise

I Use replacement policies as in cache memories (e.g. least
recently used)

I Learn which shapes are relevant.

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Idea 4: Persistent Asynchronous Adaptive Specialisation

Key observations:

I Dynamic code adaptation is for one program run

I Insight: the very same dynamic specialisations are built again
and again

Solution:

I Store dynamic specialisations in installation-wide persistent
storage

I Incrementally update the binary format of a module with new
specialisations as they materialise

I Use replacement policies as in cache memories (e.g. least
recently used)

I Learn which shapes are relevant.

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

Conclusion and Future Work

Conclusion:

I Time to availability of specialisations is crucial !
I We propose 4 complementary measures:

I Manifold
I Prioritised
I Parallel
I Persistent

..... asynchronous adaptive specialisation

Future work:

I Complete implementation(s)

I Conduct more case studies

I Do extensive evaluation

I Give a talk at DCE 2015

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing

