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What is ...

Functional Data Parallel Array Processing ?

I Programming with multidimensional, immutable arrays

I Abstract from structural properties of arrays

I Treat arrays as abstract values

I Storage, layout, operations, ... all implicit
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Single Assignment C (SAC)

Language:

I Purely functional programming language

I Generic data-parallel array processing

I All arrays immutable
I Syntax imitates ISO C

I Assignment sequences (→ let-expressions)
I Branches (→ conditional expressions)
I Loops (→ tail-recursive functions)

Compiler:

I Highly optimising compiler

I Performance competitive with Fortran or C
I Automatic parallelisation for

I Symmetric multicore multiprocessors
I Graphics accelerators
I Heterogeneous systems
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Multidimensional Array Calculus: Rank and Shape
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Shapely Array Type Hierarchy

...

... ... ......int int[1] int[42]

int[.]

int[  ]

int[.,.]

int[1,1] int[3,7]

* rank: 

shape: 

rank: 

shape: 

rank: 

shape: 

dynamic
dynamic

static

dynamic

static

static

Clemens Grelck, University of Amsterdam Advances in DC for Functional Data Parallel Array Processing



Genericity vs Performance Trade-Off
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What software engineering principles demand:

I rank- and shpahe-generic programs

I wide-spread applicability

I code reuse

What the machine needs for performance:

I code customised to processed data

I exploit compile time knowledge for optimisation

I overcome abstraction boundaries
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How Can We Reconcile Genericity and Performance ?

Observation:

I Often small numbers of different shapes prevail.

I Specialisation for concrete ranks and shapes !!

I Effectively apply large-scale static optimisation !!

Limitations:

I Code obfuscation

I Arrays obtained from external source (e.g. file)

I Functions called from external environment (e.g. C code)

Solution:
Dynamic Compilation to the rescue !
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Solution: Adaptive Runtime Specialisation

Observations:

I Various compute cores available even in modest systems

I Even with linear speedups one or two cores less hardly matter

Idea:

I Set one core aside for dynamic code adaptation

I Incrementally generate more efficient code as shape
information becomes available

I Accumulate adapted code in running process through
dynamic linking

I Use adapted code as soon as available through dynamic
dispatch
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Case Study: Convolution with Convergence Check

Algorithmic principle:

Iteratively compute the weighted
sums of neighbouring elements with
cyclic neighbourhoods and dynamic
convergence check

Implementation in SAC:

double [*] convolution (double [*] A, double eps)

{

do {

A_old = A;

A = convolution_step( A_old);

}

while (! is_convergent( A, A_old , eps));

return A;

}
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Evaluation Example: 3-d Convolution 100x100x100
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Convolution steps

Experiment: 100x100x100 array
Runtime specialisation disabled
Runtime specialisation enabled
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Availability of Adapted Code
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Experiment: 100x100x100 array
Runtime specialisation disabled
Runtime specialisation enabled

Key question:
How can we speed up the availability of adapted code ?

I Accelerate SAC compiler ?
I Hahaha .....

Subject of this talk: 4 complementary proposals to speed up
availability of adapted code
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Idea 1: Manifold Asynchronous Adaptive Specialisation

Key observations:

I Specialisation requests come in in bursts

I Dynamic specialisation often exhibits a great deal of sharing
among functions from same module

I Specialising two functions in conjunction may take the same
time as each individually

Our solution:

I Postpone triggering a specialisation by some (small) amount
of time

I Expect more specialisation requests before cut-off time

I Specialise multiple functions together
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Idea 2: Prioritised Asynchronous Adaptive Specialisation

Observation:

I Different specialisations yield different performance
improvements

I Can we choose the (presumably) most effective one?

Solution:

I Turn specialisation request queue into priority queue

I Create buckets of functions from same module

I Gather statistical profiling data regarding effectiveness of
specialisation
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Idea 3: Parallel Asynchronous Adaptive Specialisation

First approach: dedicated specialisation core:

1 2 4 6 8 10 12 14 16

Key observations:

I Dynamic specialisations are time-consuming
I Adapted functions only become available with delay
I Insight 1: One specialisation core only is suboptimal

I Insight 2: Any fixed number of specialisation cores is
suboptimal since specialisation competes with core application
for resources

Solution:

I Dynamically adjust number of specialisation cores:

1 2 4 6 8 10 12 14 16
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Idea 4: Persistent Asynchronous Adaptive Specialisation

Key observations:

I Dynamic code adaptation is for one program run

I Insight: the very same dynamic specialisations are built again
and again

Solution:

I Store dynamic specialisations in installation-wide persistent
storage

I Incrementally update the binary format of a module with new
specialisations as they materialise

I Use replacement policies as in cache memories (e.g. least
recently used)

I Learn which shapes are relevant.
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Conclusion and Future Work

Conclusion:

I Time to availability of specialisations is crucial !
I We propose 4 complementary measures:

I Manifold .....
I Prioritised .....
I Parallel .....
I Persistent .....

..... asynchronous adaptive specialisation

Future work:

I Complete implementation(s)

I Conduct more case studies

I Do extensive evaluation

I Give a talk at DCE 2015
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